

# MALLA REDDY ENGINEERING COLLEGE (Autonomous)

# DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

# LAB MANUAL

# FOR

# ELECTRICAL CIRCUITS LAB

COURSE : B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

CLASS : II YEAR EEE/ I SEM

SUBJECT CODE: 80205

**SUBJECT: Electrical Circuits Lab** 

### LIST OF EXPERIMENTS:

- 1. Verification of Thevenin's & Norton's Theorems for the given circuit.
- 2. Verification of maximum Power Transfer Theorem for Excitation for the Given \_T' Network.
- 3. Verification of Super Position Theorem for given electrical Network.
- 4. Verification of Compensation Theorem for DC Excitation for the given 'T' Network.
- 5. Verification of Reciprocity Theorem for DC Excitation for the given electrical Network.
- 6. Experimental determination of Quality Factor, Bandwidth and resonant frequency for the given Series & Parallel RLC Circuit.
- 7. Experimental Determination of Z & Y Parameters for the given 'T' network.
- 8. Experimental determination of Transmission & Hybrid Parameters for the given two port network.

#### **Simulation Experiments:**

- 9. Determination of branch currents in a given electrical circuit.
- 10. Determination of node voltages of a given electrical network.
- 11. Determination of transient response of a given RL & RC Circuit.
- 12. Determination of load current and voltage for a given electrical Network.

**Experiment No: 1** 

# THEVENIN'S AND NORTON'S THEOREM

## **THEVENIN'S CIRCUIT:-**



Fig (1a)

# EQUIVALENT RESISTANCE CIRCUIT (R<sub>TH</sub>):-



Fig (1.1a)

# THEVENIN'S VOLTAGE (VTH) CIRCUIT:-



Fig(1.2a)

# **EQUIVALENT CIRCUIT:**





## **NORTON'S THEOREM:**

## NORTON'S CIRCUIT



Fig (1.4a)

# NORTONS CURRENT CIRCUIT



## **EQUIVALENT NORTON'S CIRCUIT**



Fig (1.6a)

Tabulation for Thevenin's:

Under source voltage applied as shown in fig 1a

| Vs | I <sub>L</sub> (practical) | I <sub>L</sub> (theoretical) |
|----|----------------------------|------------------------------|
|    |                            |                              |
|    |                            |                              |

To measure  $V_{TH}$  in Fig.1.2a

| Vs | V <sub>TH</sub> |
|----|-----------------|
|    |                 |

To measure and calculate Thevenin's voltage and current equivalent resistance in fig 1.3a

| Vs<br>(Volts) | practical       |                 | theoretical     |                 | R <sub>TH</sub> |
|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|               | V <sub>TH</sub> | I <sub>TH</sub> | V <sub>TH</sub> | I <sub>TH</sub> |                 |
|               |                 |                 |                 |                 |                 |
|               |                 |                 |                 |                 |                 |

Tabulation for Norton's:

Under source voltage applied as shown in fig 1.4a

| Vs | I <sub>L</sub> (practical) | I <sub>L</sub> (theoretical) |
|----|----------------------------|------------------------------|
|    |                            |                              |
|    |                            |                              |

To measure V<sub>TH</sub> in Fig.1.5a

| Vs | I <sub>N</sub> |
|----|----------------|
|    |                |

To measure and calculate Norton's current equivalent resistance fig. 1.6a

| Vs<br>(Volts) | practical      |    | theoretical    |    |
|---------------|----------------|----|----------------|----|
|               | I <sub>N</sub> | IL | I <sub>N</sub> | IL |
|               |                |    |                |    |
|               |                |    |                |    |

# **THEVENIN'S AND NORTON'S THEOREM**

**AIM:** Experimental determination of Thevenin's and Norton's equivalent circuits and verifying theoretically and practically.

| S NO | Name of the Equipment | Range                     | Туре | Quantity |
|------|-----------------------|---------------------------|------|----------|
| 1.   | DRPS                  | 0-30V                     | DC   | 1        |
| 2.   | Ammeter               | 0-20mA                    | DC   | 1        |
| 3.   | DMM                   |                           |      | 1        |
| 4.   | Resistors             | $2.2k\Omega$ , $1k\Omega$ |      | 3,1      |
| 5.   | Bread board           |                           |      | 1        |
| 6.   | Connecting wires      |                           |      | required |

#### **APPARATUS REQURIED:**

### **THEORY:**

### STATEMENT OF THEVENIN'S THEOREM:

Any two terminal linear bilateral network containing of energy sources and impedances can be replaced with an equivalent circuit consisting of voltage source Vth in series with an impedance, Zth., Where Vth is the open circuit voltage between the load terminals and Zth is the impedance measured between the terminals with all the energy sources replaced by their internal impedances.

#### STATEMENT OF NORTON'S THEOREM:

Any two terminal linear bilateral network containing of energy sources and impedances can be replaced with an equivalent circuit consisting of current source  $I_N$  in parallel with an admittance,  $Y_N$  where  $I_N$  is the short circuit current through the load terminals and  $Y_N$  is the admittance measured between the terminals with all the energy sources replaced by their internal admittance.

# CALCULATIONS FOR THEVENIN'S AND NORTON'S THEOREMS:-Thevenin's theorem formulas:

Total current of the circuit I = Vs / R Amp.

 $I_L = \{ (Total current) \ I \times [(opposite resistance) \div (total Resistance)] \} \ Amp$ 

 $I_{sc} = \{ (Total current) I \times [(opposite resistance) / (total Resistance)] \} Amp.$ 

I=V/ R<sub>TH</sub>

 $I_L = V_{TH} / (R_{TH} + R_L)$ 

V<sub>TH</sub>=IR<sub>3</sub>

 $R_{TH} = [R_1 R_3 / (R_1 + R_3)] + R_2$ 

### Norton's theorem formulas:

 $I_T = V/R_T$ 

 $I_2 = I_{SC} = I_N$ 

 $I_N = I_T * [R_3 / (R_2 + R_3)]$ 

 $R_{N} = [R_{1}R_{3}/(R_{2}+R_{3})] + R_{2}$ 

## **PROCEDURE:**

## FOR THEVENIN'S THEOREM:

- 1. Make the connections as shown in fig (1a).
- 2. Measure the voltmeter reading name it as " $V_{th}$ ".
- 3. Remove the voltage source and short circuit the terminals.
- 4. Measure the resistance terminals by using digital Multimeter name it as "Rth".
- 5. Compare  $V_{th}$ ,  $R_{th}$  with theoretical values.

### FOR NORTON'S THEOREM:

- 1. Connect the circuit as shown in fig (1.4a)
- 2. Measure the ammeter reading name it as  $I_{sc\, \cdot}$
- 3. Remove the voltage source and short circuit the terminals.
- 4. Measure the resistance terminals by using digital Multimeter name it as " $R_{th}$ ".
- 5. Compare Isc, Rth with theoretical values.

## **PRECAUTIONS:**

- 1. Avoid making loose connections.
- 2. Readings should be taken carefully without parallax error.
- 3. Avoid series connection of voltmeters and parallel connection ammeters.

**RESULT:** Verified theoretically and practically Load current by using Thevenin's and Norton's theorems.

**Experiment No 2** 

# MAXIMUM POWER TRANSFER THEOREM

# Maximum Power Transfer Theorem Circuit:-



Fig (1b)

# Equivalent circuit of maximum power transfer theorem:-



Fig (1.1b)

## MAXIMUM POWER TRANSFER THEOREM

Aim: To verify maximum power transfer theorem theoretically and practically.

#### **APPARATUS REQURIED:**

| S NO | Name of the Equipment | Range       | Туре | Quantity        |
|------|-----------------------|-------------|------|-----------------|
| 1.   | DRBS                  | (0-30)V     | DC   | 1               |
| 2.   | DECAY RESISTANCE BOX  |             |      | 1               |
| 3.   | BREAD BOARD           |             |      | 1               |
| 4.   | AMMETER               | (0-20)mA    | DC   | 1               |
| 5.   | RESISTORS             | 2.2KΩ,3.3KΩ |      | 3,1             |
| 6.   | CONNECTING WIRES      |             |      | Our requirement |

## **THEORY:**

### STATEMENT FOR MAXIMUM POWER TRANSFER THEOREM:

It states that the maximum power is transferred from the source to the load, when the load resistance is equal to the source resistance.

## **PROCEDURE:**

- 1. Make the connections as shown in fig (1b).
- 2. By varying RL in steps, note down the reading of ammeter  $I_L$  in each step.
- 3. Connect the circuit as shown in fig (1.1b), measure the effective resistance  $R_{th}$ . With the help of digital multimeter.
- 4. Calculate power delivered to load PL in each step.
- 5. Draw a graph PL Vs RL and find the RL corresponding to maximum power from it.
- 6. Verify that RL corresponding to maximum power from the graph is equal to the  $R_{th}$  (which is nothing but source resistance RS).

#### **OBSERVATIONS:**

Tabular column:

| S.No | RL | Theoretical values |                   | Practica | l values          |
|------|----|--------------------|-------------------|----------|-------------------|
|      |    | IL.                | $P_L = I_L^2 R_L$ | ۱        | $P_L = I_L^2 R_L$ |
|      |    |                    |                   |          |                   |

#### MODEL GRAPH



**PRECAUTIONS:** 

1. Avoid making loose connections.

2. Readings should be taken carefully without parallax error.

3. Avoid series connection of voltmeters and parallel connection ammeters.

### CALCULATIONS:

**RESULT:** Verified theoretically and practically Load current by using Maximum Power Transfer Theorem

Experiment no: 3

# **SUPER POSITION THEOREM**

### SUPERPOSITION THEOREM AND RMS VALUE OF COMPLEX WAVE:-

# Case1:VS1=10V, VS2=5V



Fig (2)

Case2:-VS1=10V, VS2=0V



Fig (2.1)

### Case3:VS1=0V, VS2=5V



Fig (2.2)

### **OBSERVATIONS:**

# When both sources are acting fig 2

| V <sub>1</sub> | $V_2$ | I <sub>X</sub> (Theoretical) | I <sub>X</sub> (Practical) |
|----------------|-------|------------------------------|----------------------------|
|                |       |                              |                            |
|                |       |                              |                            |

### When V<sub>1</sub> source alone in fig 2.1

| V <sub>1</sub> | $V_2$ | I <sub>Y</sub> (Theoretical) | I <sub>Y</sub> (Practical) |
|----------------|-------|------------------------------|----------------------------|
|                |       |                              |                            |
|                |       |                              |                            |

### When $V_2$ source alone in fig 2.2

| V <sub>1</sub> | $V_2$ | I' <sub>Y</sub> (Theoretical) | I' <sub>Y</sub> (Practical) |
|----------------|-------|-------------------------------|-----------------------------|
|                |       |                               |                             |
|                |       |                               |                             |

# SUPER POSITION THEOREM

**AIM**: Verification of Superposition theorem and to experimentally determine the RMS value of a complex wave.

#### **APPARATUS REQURIED:**

| S NO | Name of the Equipment | Range             | Туре | Quantity |
|------|-----------------------|-------------------|------|----------|
| 1.   | DRPS                  | (0-30)V           | DC   | 1        |
| 2.   | Bread board           |                   |      | 1        |
| 3.   | Ammeter               | (0-20)mA          | DC   | 1        |
| 4.   | Resistors             | 560Ω,1000Ω, 2.2ΚΩ |      | 1,1,1    |
| 5.   | Connecting wires      |                   |      | Required |

### **THEORY:**

### SUPERPOSITION THEOREM STATEMENT

In any linear bilateral network containing two or more energy sources the response at any element is equivalent to the algebraic sum of the responses caused by the individual sources.

i.e. While considering the effect of individual sources, the other ideal voltage sources and ideal current sources in the network are replaced by short circuit and open circuit across the terminals. This theorem is valid only for linear systems.

#### **PROCEDURE:**

#### **SUPERPOSITION THEOREM:**

1. Connect the circuit as shown in fig (2)

2. Current through load resistor is noted as  $I_X$  by applying both the voltages  $V_1$  and  $V_2$  through RPS.

3. Make the supply voltage  $V_2$  short circuited and apply  $V_1$  as shown in fig (2.1) and note down the current through load resistor as  $I_Y$ .

4. Make the supply voltage  $V_1$  short circuited and apply  $V_2$  as shown in fig (2.2) and note down the current through load resistor as  $I'_Y$ .

5. Now verify that  $I_X = I_Y + I'_Y$  theoretically and practically which proves Superposition Theorem

## **PRECAUTIONS:**

- 1. Avoid making loose connections.
- 2. Readings should be taken carefully without parallax error.
- 3. Avoid series connection of voltmeters and parallel connection ammeters.

CALCULATION: I=V/R  $[(V_1-V)/R_1]+V/R_2+[(V_2-V)/R_3] = 0$   $I=V/R_2$   $I_T=V_1/R_T$   $I_1=I_T*R_3/(R_2+R_3)$   $I_T=V_2/R_T$  $I_2=I_T*R_1/(R_1+R_2)$ 

**RESULT:** Superposition theorem is verified theoretically and practically.

Experiment no: 4

# **COMPENSATION THEOREM**

#### VERIFICATION OF COMPENSATION THEOREM

**<u>AIM:</u>** To verify compensation theorem.

#### **APPARATUS:**

| Sl.no | Name             | Туре       | Range          | Qty         |
|-------|------------------|------------|----------------|-------------|
| 1.    | Voltmeter        | MC         | 0-300V         | 1           |
|       | vonneter         | Mic        | 0-50 V         | 1           |
| 2.    | Ammeter          | M.C        | 0-1 A          | 1           |
|       |                  |            | 0-500 Ω / 1.2Α | 1           |
| 3.    | Rheostat         | Wire wound | 0-100 Ω / 3Α   | 1           |
|       |                  |            | 0-50 Ω / 5Α    | 1           |
| 4.    | R.P.S            |            | 0-30 V / 2 A   | 1           |
| 5.    | Connecting wires |            |                | As required |

#### **THEORY:**

"In a linear bilateral network, if the current in a branch is I and the impedance Z in that branch is change by  $\delta Z$ , then the changes in the currents in all the branches of the network can be obtained as the current produced due to a voltage source of value I $\delta Z$ , introduced in that branch containing  $\delta Z$ , in a direction opposing the current I, with all the sources in the network reduced to zero".

This theorem is useful in finding the changes in current or voltage when the value of resistance or impedance is changed in the circuit.

#### **CIRCIUT DIAGRAM:**





(Double pole single thrown switch)



### **PROCEDURE:**

- 1. Connect the circuit as per the circuit diagram.
- 2. Before modifying the circuit measure the current I in the branch.
- 3. Modify the branch impedance  $Z_2 + \delta Z$  and measure the current I'. (This modification alters the currents and voltages existing in the network before modification)
- 4. Insert EMF  $\delta E = I \delta Z$  in the branch and measure I".

Its prove that I = I"

(In order to counteract the effect of changing Z by  $\delta Z$  and EMF  $\delta E$  is increased in this branch)

### **PRACTICAL OBSERVATIONS:**

From Circuit 1

| S mo         | Vin | Ι            |
|--------------|-----|--------------|
| <b>5.</b> no | (V) | ( <b>A</b> ) |
|              |     |              |

# From Circuit 2

| C            | Vin | Ι'  |
|--------------|-----|-----|
| <b>5.</b> no | (V) | (A) |
|              |     |     |

# From Circuit 3

| C ma | V1           | Ι'  | ΙδΖ          |
|------|--------------|-----|--------------|
| 5.00 | ( <b>V</b> ) | (A) | ( <b>V</b> ) |
|      |              |     |              |

**<u>RESULT:</u>** Hence the compensation theorem is verified.

Experiment no: 5

**RECIPROCITY THEOREM** 

### **RECIPROCITY THEOREM:**

CASE1:



Fig (3)

CASE2:



Fig (3.1)

#### TABULAR COLUMN OF RECIPROCITY THEOREM:-

#### **BEFORE INTER CHANGING SOURCE:-**

|    | Theoretical values |                    | Practical values |                    |
|----|--------------------|--------------------|------------------|--------------------|
| Vs | I <sub>2</sub>     | Vs/ I <sub>2</sub> | l <sub>2</sub>   | Vs/ I <sub>2</sub> |
|    |                    |                    |                  |                    |
|    |                    |                    |                  |                    |
|    |                    |                    |                  |                    |

## AFTER INTER CHANGING SOURCE

|    | Theoretical values |                    | Practical values |        |
|----|--------------------|--------------------|------------------|--------|
| Vs | I1                 | Vs/ I <sub>1</sub> | I1               | Vs/ I1 |
|    |                    |                    |                  |        |
|    |                    |                    |                  |        |

# **VERIFICATION OF RECIPROCITY THEOREM**

Aim: - To verify Reciprocity theorem theoretically and practically.

| S NO | Name of the Equipment | Range            | Туре | Quantity |
|------|-----------------------|------------------|------|----------|
| 1.   | DRPS                  | 0-30V            | DC   | 1        |
| 2.   | Ammeter               | 0-20mA           | DC   | 1        |
| 3.   | Bread board           |                  |      | 1        |
| 4.   | Resistors             | 560Ω,470Ω,2.2kΩ, |      | 1,1,1    |
| 5.   | Voltmeter             | 0-30V            | DC   | 1        |
| 6.   | Connecting wires      |                  |      | Required |

### **APPARATUS REQURIED:**

## **THEORY:-**

**Reciprocity theorem**:- In a linear bilateral single source network if voltage at any point in the network produces a current at same other point in the network, the same voltage at other point produces same current at the first point in that net work.

# **PROCEDURE:-**

## **Reciprocity theorem:-**

- 1. Connect the circuit as shown in fig (3)
- 2. From fig (3) of Superposition theorem note down  $I_2=I_Y$ .
- 3. Now interchange the source and ammeter as in fig (3.1).
- 4. Note down the ammeter reading as  $I_1$ .

5. Now verify that Vs/  $I_1 = Vs/I_2$  theoretically and practically which proves reciprocity theorem.

### **CALCULATIONS:**

Reciprocity theorem:

V=IR

**RESULT:** - Verified Reciprocity theorem theoretically and practically.

Experiment no: 6 SERIES AND PARALLEL RESONANCE

## SERIES AND PARALLEL RESONANCE:

# CIRCUIT DIAGRAM OF SERIES RESONANCE:-



Fig (4)

PARALLEL RESONANCE:-



Fig 4.1

**MODEL GRAPH: Series Resonance** 



# **OBSERVATIONS:**

# SERIES RESONANCE

| S.No. | Frequency<br>(f) | Current(ls) |
|-------|------------------|-------------|
|       |                  |             |
|       |                  |             |

MODEL GRAPH: Parallel resonance



# **OBSERVATIONS** Parallel resonance:

| S.No. | Frequency (f) | Current(Is) |
|-------|---------------|-------------|
|       |               |             |

## SERIES AND PARALLEL RESONANCE

**AIM:** To verify resonant frequency, bandwidth & quality factor of RLC series and parallel Resonant circuits.

| APPARATUS | <b>REQURIED:</b> |
|-----------|------------------|
|-----------|------------------|

| S NO | Name of the Equipment  | Range                   | Туре | Quantity |
|------|------------------------|-------------------------|------|----------|
| 1.   | Function generator     | 5V <sub>PP</sub> , 1KHZ | AC   | 1        |
| 2.   | Decade Capacitance box |                         |      | 1        |
| 3.   | Decade Resistance box  |                         |      | 1        |
| 4.   | Decade Inductance box  |                         |      | 1        |
| 5.   | Ammeter                | 0-20mA                  |      | 1        |
| 6.   | Connecting wires       |                         |      | required |

### **THEORY:**

In a series RLC circuit. The current lags behind or leads the applied voltage depending upon the values of XL and Xc. XL causes the total current to lag behind the applied voltage while Xc causes the total current to lead the applied voltage. When XL > Xc the circuit is predominantly inductive, and when XL < Xc the circuit is predominantly capacitive. In the series RLC circuit resonance may be produced by varying the frequency keeping L and C constant. Otherwise resonance may be produced by varying either L or C for fixed frequency .Parallel resonance occurs when XL = Xc. when XL = Xc the two branch currents are equal in magnitude and 180 deg out of phase with each other .Hence two currents cancel each other and net current is zero.

#### **PROCEDURE:**

#### **SERIES RESONANCE:**

- 1. Connect the circuit as shown in the fig (4)
- 2. Apply a fixed voltage through function generator to the circuit.

3. The frequency of the signal is varied in steps and note down corresponding ammeter

reading as Is. observe that current is maximum at resonant frequency.

4. Draw a graph between frequency f and current Is .Mark Resonant frequency and Current at half power frequencies.

$$Q = \frac{f_0}{f_2 - f_1}$$

5. Find Bandwidth = (f2-f1.) & Quality factor from graph.

6. Compare practical values of resonant frequency, Q-factor and Bandwidth with theoretical values.

#### **PARALLEL RESONANCE:**

1. Connect the circuit as shown in the fig (4.1)

2. Apply a fixed voltage through function generator to the circuit.

3. The frequency of the signal is varied in steps and note down corresponding ammeter reading as Is. Observe that current is minimum at resonant frequency.

4. Draw a graph between frequency f and current Is .Mark resonant frequency and current at half power frequencies.

5. Find Bandwidth = (f2-f1.) & Quality factor from graph.

$$Q = \frac{f_0}{f_2 - f_1}$$

6. Compare practical values of resonant frequency, Q-factor and Bandwidth with theoretical values.

#### **PRECAUTIONS:**

- 1. Avoid making loose connections.
- 2. Readings should be taken carefully without parallax error.
- 3. Avoid series connection of voltmeters and parallel connection ammeters.

**RESULT:** Resonant frequency, Bandwidth and Quality factor of R L C Series and parallel resonant circuits are calculated.

Experiment no: 7 Z and Y PARAMETERS

### Z AND Y PARAMETERS:-

CIRCUIT FOR Z & Y PARAMETERS:







Fig: 5.1

CALCULATION FOR Z<sub>22</sub> & Z<sub>12</sub>:





## CALCULATION FOR Y<sub>11</sub> & Y<sub>21</sub>:





CALCULATION FOR Y<sub>12</sub> & Y<sub>22</sub>:



# **OBSERVATIONS:**

# When I<sub>1</sub>=0

| S.NO | V <sub>1</sub> | I <sub>2</sub> | $\mathbf{V}_2$ |
|------|----------------|----------------|----------------|
|      |                |                |                |

When I<sub>2</sub>=0

| S.NO | <b>V</b> <sub>1</sub> | <b>I</b> <sub>1</sub> | $\mathbf{V}_2$ |
|------|-----------------------|-----------------------|----------------|
|      |                       |                       |                |

When V<sub>1</sub>=0

| S.NO | <b>I</b> <sub>2</sub> | I <sub>1</sub> | $V_2$ |
|------|-----------------------|----------------|-------|
|      |                       |                |       |

# When V<sub>2</sub>=0

| S.NO | V1 | <b>I</b> <sub>1</sub> | I <sub>2</sub> |
|------|----|-----------------------|----------------|
|      |    |                       |                |

# **RESULT TABLE:**

|             | Z Parameters    |                 |                 |                 | Y Parameters    |                 |                 |                 |
|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|             | Z <sub>11</sub> | Z <sub>12</sub> | Z <sub>21</sub> | Z <sub>22</sub> | Y <sub>11</sub> | Y <sub>12</sub> | Y <sub>21</sub> | Y <sub>22</sub> |
| Theoretical |                 |                 |                 |                 |                 |                 |                 |                 |
| Practical   |                 |                 |                 |                 |                 |                 |                 |                 |

# Z and Y PARAMETERS

AIM: To obtain experimentally Z parameters and Y parameters of a given two port network.

| S NO | Name of the Equipment | Range  | Туре | Quantity        |
|------|-----------------------|--------|------|-----------------|
| 1.   | DRPS                  | 0-30V  |      | 1               |
| 2.   | Ammeter               | 0-20mA | DC   | 2               |
| 3.   | Voltmeter             | 0-30V  | DC   | 1               |
| 4.   | Resistors             | 1ΚΩ,   |      | 1               |
|      |                       | 1.5KΩ, |      | 1               |
|      |                       | 2.2KΩ  |      | 1               |
| 5.   | Bread board           |        |      | 1               |
| 6.   | Connecting wires      |        |      | Our requirement |

### **APPARATUS REQURIED:**

## **THEORY:**

A network is having two pairs of accessible terminals, it is called a two port network. If voltage and current at the input and output terminals are V1, I1 and V2, I2 respectively, there are six sets of possible combinations generated by the four variables, describing a two – port network. Z - parameters and Y- parameters are two among them.

Using Z- parameters the circuit can be represented by the following equations V1 = Z11 I1 + Z12 I2V2 = Z21 I1 + Z22 I2

Using Y- parameters the circuit can be represented by the following equations I1 = Y11 V1 + Y12 V2I2 = Y21 V1 + Y22 V2

## **PROCEDURE:**

1. Open Circuiting Output Terminals (I2 = 0):

Connections are made as per the circuit diagram shown in fig (5). Output terminals are kept Open via a voltmeter. Supply is given to input port. Note the readings of ammeter as I1 and Voltmeter as V2. 2. Short circuiting output terminals (V2 = 0): Connections are made as per the circuit diagram shown in fig (5.3). Output terminals are short circuited via an ammeter. Supply is given to input port. Note the readings of ammeters as I1 and I2.

3. Open circuiting input terminals (I1 = 0): Connections are made as per the circuit diagram shown in fig (5.2). Input terminals are kept open via an voltmeter. Supply is given to output terminals. Note the readings of ammeter as I2 and voltmeter as V1.

4. Short circuiting input terminals (V1=0): Connections are made as per the circuit diagram shown in fig (5.4). Input terminals are short circuited via an ammeter. Supply is given to output port. Note the readings of ammeters as I1 and I2.

5. Calculate Z, Y Parameters values

### **PRECAUTIONS:**

- 1. Avoid making loose connections.
- 2. Readings should be taken carefully without parallax error.
- 3. Avoid series connection of voltmeters and parallel connection ammeters.

### **CALCULATIONS:**

#### **Theoretical formulas:**

 $V_1 = Z_{11}I_1 + Z_{12}I_2$   $V_2 = Z_{21}I_1 + Z_{22}I_2$ When  $I_1 = 0$ 

$$Z_{12} = V_1/I_2$$
  
 $Z_{22} = V_2/I_2$ 

When I<sub>2</sub>=0

$$Z_{11}=V_1/I_1$$
  
 $Z_{21}=V_2/I_1$ 

 $I_1 = Y_{11}V_1 + Y_{12}V_2$  $I_2 = Y_{21}V_1 + Y_{22}V_2$ 

When V<sub>2</sub>=0

$$Y_{11} = I_1 / V_1$$
  
 $Y_{21} = I_2 / V_1$ 

When V<sub>1</sub>=0

$$Y_{12}=I_1/V_2$$
  
 $Y_{22}=I_2/V_2$ 

**RESULT:** Experimentally Determined Z and Y Parameters of Two Port Networks.

Experiment no: 8

**Transmission & Hybrid Parameters** 

**AIM:** To determine the ABCD (T) and Hybrid (H) parameters of a two port network.

### **APPARATUS REQUIRED**:

| S.No | Name Of The Equipment | Range          | Туре    | Quantity        |
|------|-----------------------|----------------|---------|-----------------|
| 1    | Voltmeter             | (0-20)V        | Digital | 1 NO            |
| 2    | Ammeter               | (0-20)mA       | Digital | 1 NO            |
| 3    | RPS                   | 0-30V          | Digital | 1 NO            |
|      |                       | 10K Ω          |         | 1 NO            |
| 4    | Resistors             | $2.2\Omega$    |         | 1 NO            |
|      |                       | $680 \ \Omega$ |         | 1 NO            |
| 5    | Breadboard            | -              | -       | 1 NO            |
| 6    | Connecting wires      |                |         | Required number |

### **CIRCUIT DIAGRAMS:**

#### **GIVEN CIRCUIT:**



### **PRACTICAL CIRCUITS:**

**1.** When  $I_1 = 0$ :



**2.** When  $I_2 = 0$ :



**3.** When  $V_2 = 0$ :



#### **THEORY:**

The relation between the voltages and currents of a two port network in terms of ABCD and h-parameters is given as follows.

#### **ABCD PARAMETERS:**

 $V_{1=}AV_2\text{-}BI_2$ 

- $I_{1=}CV_2\text{-}DI_2$
- A = V1 / V2 when I2 =0 B = -V1 / I2 when V2=0 C = I1 / V2 when I2=0 D = -I1 / I2 when V2 = 0

#### **H-PARAMETERS**

V1=h1111+h12V2 I2=h1111+h22V2  $h_{11} \stackrel{\text{def}}{=} \frac{V_1}{I_1}\Big|_{V_2=0}$   $h_{12} \stackrel{\text{def}}{=} \frac{V_1}{V_2}\Big|_{I_1=0}$  $h_{21} \stackrel{\text{def}}{=} \frac{I_2}{I_1}\Big|_{V_2=0}$   $h_{22} \stackrel{\text{def}}{=} \frac{I_2}{V_2}\Big|_{I_1=0}$ 

#### **PROCEDURE:**

- 1. Connections are made as per the circuit diagram.
- 2. Open circuit the port -1 i.e.,  $I_1=0$  find the values of  $V_1$ , I2 and  $V_2$ .
- **3**. Short circuit the port-1  $V_1 = 0$  find the values of  $V_2$ ,  $I_1$  and  $I_2$ .
- 4. Open circuit the port -2 i.e.,  $I_2=0$  find the values of  $V_1$ , I1 and  $V_2$ .
- 5. Short circuit the port-2 i.e.  $V_2 = 0$  find the values of  $V_1$ ,  $I_1$  and  $I_2$
- 6. Find the ABCD and h-parameters of the given two port network from the above data.

### **THEORITICAL VALUES:**

| $V_2 = 0$ | V1= | I1= | I2= |
|-----------|-----|-----|-----|
| $I_1 = 0$ | V1= | V2= | I2= |
| $I_2 = 0$ | V1= | V2= | I1= |

### **PRACTICAL VALUES:**

| $V_2 = 0$ | V1= | I1= | I2= |
|-----------|-----|-----|-----|
| $I_1 = 0$ | V1= | V2= | I2= |
| $I_2 = 0$ | V1= | V2= | I1= |

### **ABCD Parameters:**

| <b>T</b> -parameters | Theoretical | Practical |
|----------------------|-------------|-----------|
| Α                    |             |           |
| В                    |             |           |
| С                    |             |           |
| D                    |             |           |

### h-Parameters

| h-Parameters | Theoretical | Practical |
|--------------|-------------|-----------|
| h11          |             |           |
| h12          |             |           |
| h21          |             |           |
| h22          |             |           |

### **PRECAUTIONS:**

- 1. Initially keep the RP S output voltage knob in zero volt position.
- 2. Avoid loose connections.
- 3. Do not short-circuit the RPS output terminals.

**RESULT:** Hence ABCD (T) and Hybrid (H) parameters of a two port network is determined.

Experiment no: 9

Mesh analysis of DC Circuit using PSpice

# Mesh analysis of DC Circuit using PSpice



# \* Program for Transfer Function Analysis

| VIN  | 1 | 0 | DC | 10V | ; Voltage Source of 10V DC              |
|------|---|---|----|-----|-----------------------------------------|
| R1   | 1 | 2 | 5  |     | ; 5 OHMS resistance between nodes 1 & 2 |
| R2   | 2 | 3 | 10 |     |                                         |
| R3   | 2 | 0 | 20 |     |                                         |
| R4   | 3 | 0 | 40 |     |                                         |
| .OP  |   |   |    |     |                                         |
| .END |   |   |    |     | ; End of the Program                    |

#### **RESULT ANALYSIS**

#### \* CIRCUIT DESCRIPTION

VIN 1 0 DC 10V 5 **R**1 1 2 R2 2 3 10 R3 2 0 20 R4 3 0 40 .OP .END \* SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE (1) 10.0000 (2) 7.4074 (3) 5.9259 **VOLTAGE SOURCE CURRENTS** NAME CURRENT VIN -5.185E-01 TOTAL POWER DISSIPATION 5.19E+00 WATTS JOB CONCLUDED TOTAL JOB TIME .86

Experiment no: 10

Nodal analysis of DC Circuit using PSpice

Nodal analysis of DC Circuit using PSpice:



# Program for Transfer Function Analysis

| VIN  | 1 | 0 | DC | 10V | ; Voltage Source of 10V DC              |
|------|---|---|----|-----|-----------------------------------------|
| R1   | 1 | 2 | 5  |     | ; 5 OHMS resistance between nodes 1 & 2 |
| R2   | 2 | 3 | 10 |     |                                         |
| R3   | 2 | 0 | 20 |     |                                         |
| R4   | 3 | 0 | 40 |     |                                         |
| .OP  |   |   |    |     |                                         |
| .END |   |   |    |     | ; End of the Program                    |

#### **RESULT ANALYSIS**

#### \* CIRCUIT DESCRIPTION

 R3
 2
 0
 20

 R4
 3
 0
 40

.OP

.END

\* SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

```
(1) 10.0000 (2) 7.4074 (3) 5.9259
```

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VIN -5.185E-01

TOTAL POWER DISSIPATION 5.19E+00 WATTS

JOB CONCLUDED

TOTAL JOB TIME .86

**EXPERIMENT-11** 

DC Transient response using PSpice Simulation

#### DC Transient response using PSpice Simulation

#### AIM: - PSpice simulation of Transient response of RLC circuit for Pulse input

#### **CIRCUIT DIAGRAM**



\* PULSE (-VS +VS TD TR TF PW PER) ; Pulse input

\* TD = Delay Time, TR = Rise Time, TF = Fall Time, PW = Pulse Width, PER = Periodicity VIN 1 0 PULSE (-220V 220V 0 1NS 1NS 100US 200US)

R1 1 2 2

L1 2 3 50UH

C1 3 0 10UF

```
* .TRAN TSTEP TSTOP ; Command for transient analysis
```

TRAN 1US 400US

```
*.PRINT TRAN V(R1) V(L1) V(C1) : Prints on the output file
```

.PROBE ; Graphical waveform analyzer

.END ; End of circuit

#### **OUTPUT**



**EXPERIMENT-12** 

### LOAD CURRENT AND VOLTAGE DETERMINATION BY SIMULATION

Analysis of DC Circuit using PSpice:



# Program for Transfer Function Analysis

| VIN        | 1 | 0 | DC | 10V | ; Voltage Source of 10V DC              |
|------------|---|---|----|-----|-----------------------------------------|
| <b>R</b> 1 | 1 | 2 | 5  |     | ; 5 OHMS resistance between nodes 1 & 2 |
| R2         | 2 | 3 | 10 |     |                                         |
| R3         | 2 | 0 | 20 |     |                                         |
| R4         | 3 | 0 | 40 |     |                                         |
| .OP        |   |   |    |     |                                         |
| .END       |   |   |    |     | ; End of the Program                    |

#### **RESULT ANALYSIS**

#### \* CIRCUIT DESCRIPTION

 R3
 2
 0
 20

 R4
 3
 0
 40

.OP

.END

\* SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

```
(1) 10.0000 (2) 7.4074 (3) 5.9259
```

VOLTAGE SOURCE CURRENTS

NAME CURRENT

VIN -5.185E-01

TOTAL POWER DISSIPATION 5.19E+00 WATTS

JOB CONCLUDED

TOTAL JOB TIME .86